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Introduction

We want to determine the Artin-Schreier equations which define
Galois extensions.

The extensions we are interested in are:

Over a local field K

Of characteristic p, an odd prime

Of degree p4

Totally ramified
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Definitions

Throughout this presentation, the
following definitions will be used:

K = K0 is the base field.

Ki is a degree p extension over
Ki−1.

℘ is the Weierstrass ℘ function,
defined as ℘(x) = xp − x .

xi is an element of Ki − Ki−1 such
that ℘(xi ) ∈ Ki−1.
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Presentations of Galois Groups

According to Burnside (2013), there are fifteen Galois groups for
extensions of this definition. Five are abelian; ten are nonabelian.
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Process Overview

To determine the Artin-Schreier equations for each extension, the
following general process was followed:

Start with equations for degree p3 extension K3/K

These were determined by Elder last year

Observe group structure of Gal (K4/K1) (degree p3)

This determines all group actions except one

Determine how σ acts on x4, where Gal (K1/K) = 〈σ〉
Use all of this information to determine ℘(x4), giving an
Artin-Schreier equation

Redefine maps and elements to make definitions nicer and
more consistent
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Specific Items

A few definitions and identities helped this process along:

Remark

When Gal (L/K) = 〈σ〉, Tr (L/K) =
∑n−1

i=0 σ
i , where n = [L : K ]

Definitions (Witt Polynomials)

w(x) = xp+℘(x)p−(x+℘(x))p

p

W (x , y) = xp
2

+℘(x)p
2−(x+℘(x))p

2
+p(yp+℘(y)p−(y+℘(y)+w(x))p)

p2

Grant Moles Classifying Totally Ramified Galois Extensions of Prime Power Order Over Local Fields



Introduction and Background
Process
Results

Specific Items (continued)

When [K (x) : K ] = p and Gal (K(x)/K) = 〈σ〉, we have:

Tr (K(x)/K)
(
xp+1−(x+1)p

p

)
= 1

℘
(
xp+1−(x+1)p

p

)
= (σ − 1)w(x)

When K (x)/K is as above, [K (x , y) : K (x)] = p, and
Gal (K(x ,y)/K(x)) = 〈σp〉, we have:

Tr (K(x ,y)/K)

(
xp

2
+1−(x+1)p

2
+p

(
yp−

(
y+ xp+1−(x+1)p

p

)p)
p2

)
= 1

℘

(
xp

2
+1−(x+1)p

2
+p

(
yp−

(
y+ xp+1−(x+1)p

p

)p)
p2

)
= (σ − 1)W (x , y)
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Important Item

The most important item used was the additive version of Hilbert’s
Theorem 90, a direct result of the Normal Basis Theorem.

Hilbert’s Theorem 90 (additive)

For a finite Galois extension L/K , with Gal (L/K) = 〈σ〉:

If Tr (L/K) (k1) = 0, where k1 ∈ L, then:
∃ k2 ∈ L such that (σ − 1)k2 = k1.
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Element Definitions

To simplify the results, define the following:

℘(x1) = β1, where β1 ∈ K

℘(x2) = β2, where β2 ∈ K

℘(x3) = B3 + β3, where β3 ∈ K , B3 ∈ K2

℘(x4) = B4 + β4, where β4 ∈ K , B4 ∈ K3

A1 = β2x1, A3 = β3x1

A2 = β2

(x1
2

)
= β2

x1(x1−1)
2

σi ∈ Gal (K4/K) such that σi fixes Ki−1, σi (xi ) = xi + 1
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